1. SEJ
  2.  ⋅ 
  3. SEO

Introduction To Vector Databases And How To Use AI For SEO

Learn how to use vector databases for AI SEO and enhance your content strategy. Find the closest semantic similarity for your target query with efficient vector embeddings.

Introduction To Vector Databases And How To Use AI For SEO

A vector database is a collection of data where each piece of data is stored as a (numerical) vector. A vector represents an object or entity, such as an image, person, place etc. in the abstract N-dimensional space.

Vectors, as explained in the previous chapter, are crucial for identifying how entities are related and can be used to find their semantic similarity. This can be applied in several ways for SEO – such as grouping similar keywords or content (using kNN).

In this article, we are going to learn a few ways to apply AI to SEO, including finding semantically similar content for internal linking. This can help you refine your content strategy in an era where search engines increasingly rely on LLMs.

You can also read a previous article in this series about how to find keyword cannibalization using OpenAI’s text embeddings.

Let’s dive in here to start building the basis of our tool.

Understanding Vector Databases

If you have thousands of articles and want to find the closest semantic similarity for your target query, you can’t create vector embeddings for all of them on the fly to compare, as it is highly inefficient.

For that to happen, we would need to generate vector embeddings only once and keep them in a database we can query and find the closest match article.

And that is what vector databases do: They are special types of databases that store embeddings (vectors).

When you query the database, unlike traditional databases, they perform cosine similarity match and return vectors (in this case articles) closest to another vector (in this case a keyword phrase) being queried.

Here is what it looks like:

Text embedding record example in the vector database.Text embedding record example in the vector database.

In the vector database, you can see vectors alongside metadata stored, which we can easily query using a programming language of our choice.

In this article, we will be using Pinecone due to its ease of understanding and simplicity of use, but there are other providers such as ChromaBigQuery, or Qdrant you may want to check out.

Let’s dive in.

1. Create A Vector Database

First, register an account at Pinecone and create an index with a configuration of “text-embedding-ada-002” with ‘cosine’ as a metric to measure vector distance. You can name the index anything, we will name itarticle-index-all-ada‘.

Creating a vector database Creating a vector database.

This helper UI is only for assisting you during the setup, in case you want to store Vertex AI vector embedding you need to set ‘dimensions’ to 768 in the config screen manually to match default dimensionality and you can store Vertex AI text vectors (you can set dimension value anything from 1 to 768 to save memory).

In this article we will learn how to use OpenAi’s ‘text-embedding-ada-002’ and Google’s Vertex AI ‘text-embedding-005’ models.

Once created, we need an API key to be able to connect to the database using a host URL of the vector database.

Next, you will need to use Jupyter Notebook. If you don’t have it installed, follow this guide to install it and run this command (below) afterward in your PC’s terminal to install all necessary packages.

pip install openai google-cloud-aiplatform google-auth pandas pinecone-client tabulate ipython numpy

And remember ChatGPT is very useful when you encounter issues during coding!

2. Export Your Articles From Your CMS

Next, we need to prepare a CSV export file of articles from your CMS. If you use WordPress, you can use a plugin to do customized exports.

As our ultimate goal is to build an internal linking tool, we need to decide which data should be pushed to the vector database as metadata. Essentially, metadata-based filtering acts as an additional layer of retrieval guidance, aligning it with the general RAG framework by incorporating external knowledge, which will help to improve retrieval quality.

For instance, if we are editing an article on “PPC” and want to insert a link to the phrase “Keyword Research,” we can specify in our tool that “Category=PPC.” This will allow the tool to query only articles within the “PPC” category, ensuring accurate and contextually relevant linking, or we may want to link to the phrase “most recent google update” and limit the match only to news articles by using ‘Type’ and published this year.

In our case, we will be exporting:

  • Title.
  • Category.
  • Type.
  • Publish Date.
  • Publish Year.
  • Permalink.
  • Meta Description.
  • Content.

To help return the best results, we would concatenate the title and meta descriptions fields as they are the best representation of the article that we can vectorize and ideal for embedding and internal linking purposes.

Using the full article content for embeddings may reduce precision and dilute the relevance of the vectors.

This happens because a single large embedding tries to represent multiple topics covered in the article at once, leading to a less focused and relevant representation. Chunking strategies (splitting the article by natural headings or semantically meaningful segments) need to be applied, but these are not the focus of this article.

Here’s the sample export file you can download and use for our code sample below.

2. Inserting OpenAi’s Text Embeddings Into The Vector Database

Assuming you already have an OpenAI API key, this code will generate vector embeddings from the text and insert them into the vector database in Pinecone.

import pandas as pd
from openai import OpenAI
from pinecone import Pinecone
from IPython.display import clear_output

# Setup your OpenAI and Pinecone API keys
openai_client = OpenAI(api_key='YOUR_OPENAI_API_KEY')  # Instantiate OpenAI client
pinecone = Pinecone(api_key='YOUR_PINECON_API_KEY')

# Connect to an existing Pinecone index
index_name = "article-index-all-ada"
index = pinecone.Index(index_name)

def generate_embeddings(text):
    """
    Generates an embedding for the given text using OpenAI's API.
    Returns None if text is invalid or an error occurs.
    """
    try:
        if not text or not isinstance(text, str):
            raise ValueError("Input text must be a non-empty string.")

        result = openai_client.embeddings.create(
            input=text,
            model="text-embedding-ada-002"
        )

        clear_output(wait=True)  # Clear output for a fresh display

        if hasattr(result, 'data') and len(result.data) > 0:
            print("API Response:", result)
            return result.data[0].embedding
        else:
            raise ValueError("Invalid response from the OpenAI API. No data returned.")

    except ValueError as ve:
        print(f"ValueError: {ve}")
        return None
    except Exception as e:
        print(f"An error occurred while generating embeddings: {e}")
        return None

# Load your articles from a CSV
df = pd.read_csv('Sample Export File.csv')

# Process each article
for idx, row in df.iterrows():
    try:
        clear_output(wait=True)
        content = row["Content"]
        vector = generate_embeddings(content)

        if vector is None:
            print(f"Skipping article ID {row['ID']} due to empty or invalid embedding.")
            continue

        index.upsert(vectors=[
            (
                row['Permalink'],  # Unique ID
                vector,            # The embedding
                {
                    'title': row['Title'],
                    'category': row['Category'],
                    'type': row['Type'],
                    'publish_date': row['Publish Date'],
                    'publish_year': row['Publish Year']
                }
            )
        ])
    except Exception as e:
        clear_output(wait=True)
        print(f"Error processing article ID {row['ID']}: {str(e)}")

print("Embeddings are successfully stored in the vector database.")

You need to create a notebook file and copy and paste it in there, then upload the CSV file ‘Sample Export File.csv’ in the same folder.

Jupyter projectJupyter project.

Once done, click on the Run button and it will start pushing all text embedding vectors into the index article-index-all-ada we created in the first step.

Running the scriptRunning the script.

You will see an output log text of embedding vectors. Once finished, it will show the message at the end that it was successfully finished. Now go and check your index in the Pinecone and you will see your records are there.

3. Finding An Article Match For A Keyword

Okay now, let’s try to find an article match for the Keyword.

Create a new notebook file and copy and paste this code.

from openai import OpenAI
from pinecone import Pinecone
from IPython.display import clear_output
from tabulate import tabulate  # Import tabulate for table formatting

# Setup your OpenAI and Pinecone API keys
openai_client = OpenAI(api_key='YOUR_OPENAI_API_KEY')  # Instantiate OpenAI client
pinecone = Pinecone(api_key='YOUR_OPENAI_API_KEY')

# Connect to an existing Pinecone index
index_name = "article-index-all-ada"
index = pinecone.Index(index_name)


# Function to generate embeddings using OpenAI's API
def generate_embeddings(text):
    """
    Generates an embedding for a given text using OpenAI's API.

    """
    try:
        if not text or not isinstance(text, str):
            raise ValueError("Input text must be a non-empty string.")

        result = openai_client.embeddings.create(
            input=text,
            model="text-embedding-ada-002"
        )

        # Debugging: Print the response to understand its structure
        clear_output(wait=True)
        #print("API Response:", result)

        if hasattr(result, 'data') and len(result.data) > 0:
            return result.data[0].embedding
        else:
            raise ValueError("Invalid response from the OpenAI API. No data returned.")

    except ValueError as ve:
        print(f"ValueError: {ve}")
        return None

    except Exception as e:
        print(f"An error occurred while generating embeddings: {e}")
        return None

# Function to query the Pinecone index with keywords and metadata
def match_keywords_to_index(keywords):
    """
    Matches a list of keywords to the closest article in the Pinecone index, filtering by metadata dynamically.
    """
    results = []

    for keyword_pair in keywords:
        try:
            clear_output(wait=True)
            # Extract the keyword and category from the sub-array
            keyword = keyword_pair[0]
            category = keyword_pair[1]

            # Generate embedding for the current keyword
            vector = generate_embeddings(keyword)
            if vector is None:
                print(f"Skipping keyword '{keyword}' due to embedding error.")
                continue

            # Query the Pinecone index for the closest vector with metadata filter
            query_results = index.query(
                vector=vector,  # The embedding of the keyword
                top_k=1,  # Retrieve only the closest match
                include_metadata=True,  # Include metadata in the results
                filter={"category": category}  # Filter results by metadata category dynamically
            )

            # Store the closest match
            if query_results['matches']:
                closest_match = query_results['matches'][0]
                results.append({
                    'Keyword': keyword,  # The searched keyword
                    'Category': category,  # The category used for filtering
                    'Match Score': f"{closest_match['score']:.2f}",  # Similarity score (formatted to 2 decimal places)
                    'Title': closest_match['metadata'].get('title', 'N/A'),  # Title of the article
                    'URL': closest_match['id']  # Using 'id' as the URL
                })
            else:
                results.append({
                    'Keyword': keyword,
                    'Category': category,
                    'Match Score': 'N/A',
                    'Title': 'No match found',
                    'URL': 'N/A'
                })

        except Exception as e:
            clear_output(wait=True)
            print(f"Error processing keyword '{keyword}' with category '{category}': {e}")
            results.append({
                'Keyword': keyword,
                'Category': category,
                'Match Score': 'Error',
                'Title': 'Error occurred',
                'URL': 'N/A'
            })

    return results

# Example usage: Find matches for an array of keywords and categories
keywords = [["SEO Tools", "SEO"], ["TikTok", "TikTok"], ["SEO Consultant", "SEO"]]  # Replace with your keywords and categories
matches = match_keywords_to_index(keywords)

# Display the results in a table
print(tabulate(matches, headers="keys", tablefmt="fancy_grid"))

We’re trying to find a match for these keywords:

  • SEO Tools.
  • TikTok.
  • SEO Consultant.

And this is the result we get after executing the code:

Find a match for the keyword phrase from vector databaseFind a match for the keyword phrase from vector database

The table formatted output at the bottom shows the closest article matches to our keywords.

4. Inserting Google Vertex AI Text Embeddings Into The Vector Database

Now let’s do the same but with Google Vertex AItext-embedding-005’embedding. This model is notable because it’s developed by Google, powers Vertex AI Search, and is specifically trained to handle retrieval and query-matching tasks, making it well-suited for our use case.

You can even build an internal search widget and add it to your website.

Start by signing in to Google Cloud Console and create a project. Then from the API library find Vertex AI API and enable it.

Vertex AI APIScreenshot from Google Cloud Console, December 2024

Set up your billing account to be able to use Vertex AI as pricing is $0.0002 per 1,000 characters (and it offers $300 credits for new users).

Once you set it, you need to navigate to API Services > Credentials create a service account, generate a key, and download them as JSON.

Rename the JSON file to config.json and upload it (via the arrow up icon) to your Jupyter Notebook project folder.

Screenshot from Google Cloud Console, December 2024Screenshot from Google Cloud Console, December 2024

In the setup first step, create a new vector database called article-index-vertex by setting dimension 768 manually.

Once created you can run this script to start generating vector embeddings from the the same sample file using Google Vertex AI text-embedding-005 model (you can choose text-multilingual-embedding-002 if you have non-English text).

import os
import sys
import time
import numpy as np
import pandas as pd
from typing import List, Optional

from google.auth import load_credentials_from_file
from google.cloud import aiplatform
from google.api_core.exceptions import ServiceUnavailable

from pinecone import Pinecone
from vertexai.language_models import TextEmbeddingModel, TextEmbeddingInput

# Set up your Google Cloud credentials
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "config.json"  # Replace with your JSON key file
credentials, project_id = load_credentials_from_file(os.environ["GOOGLE_APPLICATION_CREDENTIALS"])

# Initialize Pinecone
pinecone = Pinecone(api_key='YOUR_PINECON_API_KEY')  # Replace with your Pinecone API key
index = pinecone.Index("article-index-vertex")       # Replace with your Pinecone index name

# Initialize Vertex AI
aiplatform.init(project=project_id, credentials=credentials, location="us-central1")

def generate_embeddings(
    text: str,
    task: str = "RETRIEVAL_DOCUMENT",
    model_id: str = "text-embedding-005",
    dimensions: Optional[int] = 768
) -> Optional[List[float]]:
    if not text or not text.strip():
        print("Text input is empty. Skipping.")
        return None
    
    try:
        model = TextEmbeddingModel.from_pretrained(model_id)
        input_data = TextEmbeddingInput(text, task_type=task)
        vectors = model.get_embeddings([input_data], output_dimensionality=dimensions)
        return vectors[0].values
    except ServiceUnavailable as e:
        print(f"Vertex AI service is unavailable: {e}")
        return None
    except Exception as e:
        print(f"Error generating embeddings: {e}")
        return None


# Load data from CSV
data = pd.read_csv("Sample Export File.csv")         # Replace with your CSV file path

for idx, row in data.iterrows():
    try:
        permalink = str(row["Permalink"])
        content = row["Content"]
        embedding = generate_embeddings(content)
        
        if not embedding:
            print(f"Skipping article ID {row['ID']} due to empty or failed embedding.")
            continue
        
        print(f"Embedding for {permalink}: {embedding[:5]}...")
        sys.stdout.flush()
        
        index.upsert(vectors=[
            (
                permalink,
                embedding,
                {
                    'category': row['Category'],
                    'title': row['Title'],
                    'publish_date': row['Publish Date'],
                    'type': row['Type'],
                    'publish_year': row['Publish Year']
                }
            )
        ])
        time.sleep(1)  # Optional: Sleep to avoid rate limits
    except Exception as e:
        print(f"Error processing article ID {row['ID']}: {e}")

print("All embeddings are stored in the vector database.")

You will see below in logs of created embeddings.

LogsScreenshot from Google Cloud Console, December 2024

4. Finding An Article Match For A Keyword Using Google Vertex AI

Now, let’s do the same keyword matching with Vertex AI. There is a small nuance as you need to use ‘RETRIEVAL_QUERY’ vs. ‘RETRIEVAL_DOCUMENT’ as an argument when generating embeddings of keywords as we are trying to perform a search for an article (aka document) that best matches our phrase.

Task types are one of the important advantages that Vertex AI has over OpenAI’s models.

It ensures that the embeddings capture the intent of the keywords which is important for internal linking, and improves the relevance and accuracy of the matches found in your vector database.

Use this script for matching the keywords to vectors.


import os
import pandas as pd
from google.cloud import aiplatform
from google.auth import load_credentials_from_file
from google.api_core.exceptions import ServiceUnavailable
from vertexai.language_models import TextEmbeddingModel

from pinecone import Pinecone
from tabulate import tabulate  # For table formatting

# Set up your Google Cloud credentials
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "config.json"  # Replace with your JSON key file
credentials, project_id = load_credentials_from_file(os.environ["GOOGLE_APPLICATION_CREDENTIALS"])

# Initialize Pinecone client
pinecone = Pinecone(api_key='YOUR_PINECON_API_KEY')  # Add your Pinecone API key
index_name = "article-index-vertex"  # Replace with your Pinecone index name
index = pinecone.Index(index_name)

# Initialize Vertex AI
aiplatform.init(project=project_id, credentials=credentials, location="us-central1")

def generate_embeddings(
    text: str,
    model_id: str = "text-embedding-005"
) -> list:
    """
    Generates embeddings for the input text using Google Vertex AI's embedding model.
    Returns None if text is empty or an error occurs.
    """
    if not text or not text.strip():
        print("Text input is empty. Skipping.")
        return None

    try:
        model = TextEmbeddingModel.from_pretrained(model_id)
        vector = model.get_embeddings([text])  # Removed 'task_type' and 'output_dimensionality'
        return vector[0].values
    except ServiceUnavailable as e:
        print(f"Vertex AI service is unavailable: {e}")
        return None
    except Exception as e:
        print(f"Error generating embeddings: {e}")
        return None


def match_keywords_to_index(keywords):
    """
    Matches a list of keyword-category pairs to the closest articles in the Pinecone index,
    filtering by metadata if specified.
    """
    results = []

    for keyword_pair in keywords:
        keyword = keyword_pair[0]
        category = keyword_pair[1]

        try:
            keyword_vector = generate_embeddings(keyword)

            if not keyword_vector:
                print(f"No embedding generated for keyword '{keyword}' in category '{category}'.")
                results.append({
                    'Keyword': keyword,
                    'Category': category,
                    'Match Score': 'Error/Empty',
                    'Title': 'No match',
                    'URL': 'N/A'
                })
                continue

            query_results = index.query(
                vector=keyword_vector,
                top_k=1,
                include_metadata=True,
                filter={"category": category}
            )

            if query_results['matches']:
                closest_match = query_results['matches'][0]
                results.append({
                    'Keyword': keyword,
                    'Category': category,
                    'Match Score': f"{closest_match['score']:.2f}",
                    'Title': closest_match['metadata'].get('title', 'N/A'),
                    'URL': closest_match['id']
                })
            else:
                results.append({
                    'Keyword': keyword,
                    'Category': category,
                    'Match Score': 'N/A',
                    'Title': 'No match found',
                    'URL': 'N/A'
                })

        except Exception as e:
            print(f"Error processing keyword '{keyword}' with category '{category}': {e}")
            results.append({
                'Keyword': keyword,
                'Category': category,
                'Match Score': 'Error',
                'Title': 'Error occurred',
                'URL': 'N/A'
            })

    return results

# Example usage: 
keywords = [["SEO Tools", "Tools"], ["TikTok", "TikTok"], ["SEO Consultant", "SEO"]]

matches = match_keywords_to_index(keywords)

# Display the results in a table
print(tabulate(matches, headers="keys", tablefmt="fancy_grid"))

And you will see scores generated:

Keyword Matche Scores produced by Vertex AI text embedding modelKeyword Matche Scores produced by Vertex AI text embedding model

Try Testing The Relevance Of Your Article Writing

Think of this as a simplified (broad) way to check how semantically similar your writing is to the head keyword. Create a vector embedding of your head keyword and entire article content via Google’s Vertex AI and calculate a cosine similarity.

If your text is too long you may need to consider implementing chunking strategies.

    A close score (cosine similarity) to 1.0 (like 0.8 or 0.7) means you’re pretty close on that subject. If your score is lower you may find that an excessively long intro which has a lot of fluff may be causing dilution of the relevance and cutting it helps to increase it.

    But remember, any edits made should make sense from an editorial and user experience perspective as well.

    You can even do a quick comparison by embedding a competitor’s high-ranking content and seeing how you stack up.

    Doing this helps you to more accurately align your content with the target subject, which may help you rank better.

    There are already tools that perform such tasks, but learning these skills means you can take a customized approach tailored to your needs—and, of course, to do it for free.

    Experimenting for yourself and learning these skills will help you to keep ahead with AI SEO and to make informed decisions.

    As additional readings, I recommend you dive into these great articles:

    More resources: 


    Featured Image: Aozorastock/Shutterstock

    ADVERTISEMENT
    SEJ STAFF Vahan Petrosyan Director of Technology at Search Engine Journal

    I am dedicated to ensuring the smooth and uninterrupted operation of Search Engine Journal. As the Director of Technology, I ...

    universo-virtual.com
    buytrendz.net
    thisforall.net
    benchpressgains.com
    qthzb.com
    mindhunter9.com
    dwjqp1.com
    secure-signup.net
    ahaayy.com
    soxtry.com
    tressesindia.com
    puresybian.com
    krpano-chs.com
    cre8workshop.com
    hdkino.org
    peixun021.com
    qz786.com
    utahperformingartscenter.org
    maw-pr.com
    zaaksen.com
    ypxsptbfd7.com
    worldqrmconference.com
    shangyuwh.com
    eejssdfsdfdfjsd.com
    playminecraftfreeonline.com
    trekvietnamtour.com
    your-business-articles.com
    essaywritingservice10.com
    hindusamaaj.com
    joggingvideo.com
    wandercoups.com
    onlinenewsofindia.com
    worldgraphic-team.com
    bnsrz.com
    wormblaster.net
    tongchengchuyange0004.com
    internetknowing.com
    breachurch.com
    peachesnginburlesque.com
    dataarchitectoo.com
    clientfunnelformula.com
    30pps.com
    cherylroll.com
    ks2252.com
    webmanicura.com
    osostore.com
    softsmob.com
    sofietsshotel.com
    facetorch.com
    nylawyerreview.com
    apapromotions.com
    shareparelli.com
    goeaglepointe.com
    thegreenmanpubphuket.com
    karotorossian.com
    publicsensor.com
    taiwandefence.com
    epcsur.com
    odskc.com
    inzziln.info
    leaiiln.info
    cq-oa.com
    dqtianshun.com
    southstills.com
    tvtv98.com
    thewellington-hotel.com
    bccaipiao.com
    colectoresindustrialesgs.com
    shenanddcg.com
    capriartfilmfestival.com
    replicabreitlingsale.com
    thaiamarinnewtoncorner.com
    gkmcww.com
    mbnkbj.com
    andrewbrennandesign.com
    cod54.com
    luobinzhang.com
    bartoysdirect.com
    taquerialoscompadresdc.com
    aaoodln.info
    amcckln.info
    drvrnln.info
    dwabmln.info
    fcsjoln.info
    hlonxln.info
    kcmeiln.info
    kplrrln.info
    fatcatoons.com
    91guoys.com
    signupforfreehosting.com
    faithfirst.net
    zjyc28.com
    tongchengjinyeyouyue0004.com
    nhuan6.com
    oldgardensflowers.com
    lightupthefloor.com
    bahamamamas-stjohns.com
    ly2818.com
    905onthebay.com
    fonemenu.com
    notanothermovie.com
    ukrainehighclassescort.com
    meincmagazine.com
    av-5858.com
    yallerdawg.com
    donkeythemovie.com
    corporatehospitalitygroup.com
    boboyy88.com
    miteinander-lernen.com
    dannayconsulting.com
    officialtomsshoesoutletstore.com
    forsale-amoxil-amoxicillin.net
    generictadalafil-canada.net
    guitarlessonseastlondon.com
    lesliesrestaurants.com
    mattyno9.com
    nri-homeloans.com
    rtgvisas-qatar.com
    salbutamolventolinonline.net
    sportsinjuries.info
    topsedu.xyz
    xmxm7.com
    x332.xyz
    sportstrainingblog.com
    autopartspares.com
    readguy.net
    soniasegreto.com
    bobbygdavis.com
    wedsna.com
    rgkntk.com
    bkkmarketplace.com
    zxqcwx.com
    breakupprogram.com
    boxcardc.com
    unblockyoutubeindonesia.com
    fabulousbookmark.com
    beat-the.com
    guatemala-sailfishing-vacations-charters.com
    magie-marketing.com
    kingstonliteracy.com
    guitaraffinity.com
    eurelookinggoodapparel.com
    howtolosecheekfat.net
    marioncma.org
    oliviadavismusic.com
    shantelcampbellrealestate.com
    shopleborn13.com
    topindiafree.com
    v-visitors.net
    qazwsxedcokmijn.com
    parabis.net
    terriesandelin.com
    luxuryhomme.com
    studyexpanse.com
    ronoom.com
    djjky.com
    053hh.com
    originbluei.com
    baucishotel.com
    33kkn.com
    intrinsiqresearch.com
    mariaescort-kiev.com
    mymaguk.com
    sponsored4u.com
    crimsonclass.com
    bataillenavale.com
    searchtile.com
    ze-stribrnych-struh.com
    zenithalhype.com
    modalpkv.com
    bouisset-lafforgue.com
    useupload.com
    37r.net
    autoankauf-muenster.com
    bantinbongda.net
    bilgius.com
    brabustermagazine.com
    indigrow.org
    miicrosofts.net
    mysmiletravel.com
    selinasims.com
    spellcubesapp.com
    usa-faction.com
    snn01.com
    hope-kelley.com
    bancodeprofissionais.com
    zjccp99.com
    liturgycreator.com
    weedsmj.com
    majorelenco.com
    colcollect.com
    androidnews-jp.com
    hypoallergenicdogsnames.com
    dailyupdatez.com
    foodphotographyreviews.com
    cricutcom-setup.com
    chprowebdesign.com
    katyrealty-kanepa.com
    tasramar.com
    bilgipinari.org
    four-am.com
    indiarepublicday.com
    inquick-enbooks.com
    iracmpi.com
    kakaschoenen.com
    lsm99flash.com
    nana1255.com
    ngen-niagara.com
    technwzs.com
    virtualonlinecasino1345.com
    wallpapertop.net
    nova-click.com
    abeautifulcrazylife.com
    diggmobile.com
    denochemexicana.com
    eventhalfkg.com
    medcon-taiwan.com
    life-himawari.com
    myriamshomes.com
    nightmarevue.com
    allstarsru.com
    bestofthebuckeyestate.com
    bestofthefirststate.com
    bestwireless7.com
    declarationintermittent.com
    findhereall.com
    jingyou888.com
    lsm99deal.com
    lsm99galaxy.com
    moozatech.com
    nuagh.com
    patliyo.com
    philomenamagikz.net
    rckouba.net
    saturnunipessoallda.com
    tallahasseefrolics.com
    thematurehardcore.net
    totalenvironment-inthatquietearth.com
    velislavakaymakanova.com
    vermontenergetic.com
    sizam-design.com
    kakakpintar.com
    begorgeouslady.com
    1800birks4u.com
    2wheelstogo.com
    6strip4you.com
    bigdata-world.net
    emailandco.net
    gacapal.com
    jharpost.com
    krishnaastro.com
    lsm99credit.com
    mascalzonicampani.com
    sitemapxml.org
    thecityslums.net
    topagh.com
    flairnetwebdesign.com
    bangkaeair.com
    beneventocoupon.com
    noternet.org
    oqtive.com
    smilebrightrx.com
    decollage-etiquette.com
    1millionbestdownloads.com
    7658.info
    bidbass.com
    devlopworldtech.com
    digitalmarketingrajkot.com
    fluginfo.net
    naqlafshk.com
    passion-decouverte.com
    playsirius.com
    spacceleratorintl.com
    stikyballs.com
    top10way.com
    yokidsyogurt.com
    zszyhl.com
    16firthcrescent.com
    abogadolaboralistamd.com
    apk2wap.com
    aromacremeria.com
    banparacard.com
    bosmanraws.com
    businessproviderblog.com
    caltonosa.com
    calvaryrevivalchurch.org
    chastenedsoulwithabrokenheart.com
    cheminotsgardcevennes.com
    cooksspot.com
    cqxzpt.com
    deesywig.com
    deltacartoonmaps.com
    despixelsetdeshommes.com
    duocoracaobrasileiro.com
    fareshopbd.com
    goodpainspills.com
    kobisitecdn.com
    makaigoods.com
    mgs1454.com
    piccadillyresidences.com
    radiolaondafresca.com
    rubendorf.com
    searchengineimprov.com
    sellmyhrvahome.com
    shugahouseessentials.com
    sonihullquad.com
    subtractkilos.com
    valeriekelmansky.com
    vipasdigitalmarketing.com
    voolivrerj.com
    zeelonggroup.com
    1015southrockhill.com
    10x10b.com
    111-online-casinos.com
    191cb.com
    3665arpentunitd.com
    aitesonics.com
    bag-shokunin.com
    brightotech.com
    communication-digitale-services.com
    covoakland.org
    dariaprimapack.com
    freefortniteaccountss.com
    gatebizglobal.com
    global1entertainmentnews.com
    greatytene.com
    hiroshiwakita.com
    iktodaypk.com
    jahatsakong.com
    meadowbrookgolfgroup.com
    newsbharati.net
    platinumstudiosdesign.com
    slotxogamesplay.com
    strikestaruk.com
    trucosdefortnite.com
    ufabetrune.com
    weddedtowhitmore.com
    12940brycecanyonunitb.com
    1311dietrichoaks.com
    2monarchtraceunit303.com
    601legendhill.com
    850elaine.com
    adieusolasomade.com
    andora-ke.com
    bestslotxogames.com
    cannagomcallen.com
    endlesslyhot.com
    iestpjva.com
    ouqprint.com
    pwmaplefest.com
    qtylmr.com
    rb88betting.com
    buscadogues.com
    1007macfm.com
    born-wild.com
    growthinvests.com
    promocode-casino.com
    proyectogalgoargentina.com
    wbthompson-art.com
    whitemountainwheels.com
    7thavehvl.com
    developmethis.com
    funkydogbowties.com
    travelodgegrandjunction.com
    gao-town.com
    globalmarketsuite.com
    blogshippo.com
    hdbka.com
    proboards67.com
    outletonline-michaelkors.com
    kalkis-research.com
    thuthuatit.net
    buckcash.com
    hollistercanada.com
    docterror.com
    asadart.com
    vmayke.org
    erwincomputers.com
    dirimart.org
    okkii.com
    loteriasdecehegin.com
    mountanalog.com
    healingtaobritain.com
    ttxmonitor.com
    bamthemes.com
    nwordpress.com
    11bolabonanza.com
    avgo.top